If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22r^2+18r=0
a = 22; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·22·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*22}=\frac{-36}{44} =-9/11 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*22}=\frac{0}{44} =0 $
| -3=5(n+3 | | 30x+45=90x+35 | | 2=x/8-10 | | (8x+7)+(5x+18)+(14x-11)+(10x+13)=360 | | P(4)=7x-3 | | 3x+2=+3x+2 | | 50-15=2c+6 | | 3(4m-1)=1 | | [4(x+3)/2=-10x | | 2x+19-14=-15 | | 5(x−2)=x+2 | | x=(2x-36) | | k+5k+5=-25 | | (2x-36)=72 | | X=(2x-36( | | 8(x+1)-x=57 | | 4(1/3x+2)-6=10 | | 29=9+4x | | (8x+14)(3x-6)(X+16)=180 | | 4n=4+8n | | 3x7+2(4+6×7)=113 | | +a/−6=5 | | x^2+(x+6)^2-(90)=0 | | 9m-13-7m=-11 | | 6x,x=(0.5) | | 4x-10=2x-60 | | 100=(6x+4) | | 2(y+3)-1=11 | | 2x-9+4=-2 | | 7(6x+8)-12=2(21x+28)-17 | | 7^3x-5=227 | | (5x-12)(2x+1)=16 |